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Journée thématique EGC & IA : Données personnelles, vie privée et éthique



Context



Privacy preserving data publishing

- Releasing data, either in their original or aggregated form

- Protecting individuals represented in the data

- Providing sufficient utility
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Privacy preserving data publishing

Original data Anonymisation mechanism Released data

Group based Differential privacy

k-anonymity l-diversity t-closeness

Differential privacyPrivate Public

Synthetic data

Supervised classification

Exploratory analysis

• Same format as the original data

• Multidimensional data

• Independent of the data mining task
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Differential Privacy: Intuition

With Jack Without Jack

OR
?

?
?

?
?

?
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Differential Privacy

- It should not harm you or help you as an individual to enter or

to leave the dataset.

- To ensure this property, we need a mechanism whose output

is nearly unchanged by the presence or absence of a single

respondent in the database.

- In constructing a formal approach, we concentrate on pairs of

databases (D1, D2) differing on only one row, with one a

subset of the other and the larger database containing a single

additional row.
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Differential Privacy

ε-Differential Privacy [Dwo06]
A data release mechanism A satisfies ε-differential privacy if for all

neighboring database D1 and D2, and released output O,

Pr [A(D1) = O] ≤ eε × Pr [A(D2) = O] .

Achieving ε-DP : Laplace mechanism
Adds random noise to the true answer of a query Q,

AQ(D) = Q(D) + Ñ, where Ñ is the Laplace noise. The

magnitude of the noise depends on the privacy levels and the

query’s sensitivity
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Existing approaches



Base line algorithm

Limitations

• Granularity of discretization

- Coarse: detail lost

- Fine: noise overwhelms

signal

1. Discretize attribute domain

into cells

2. Add noise to cell counts

(Laplace mechanism)

3. Use noisy counts to either...

3.1 Answer queries directly

(assume distribution is

uniform within cell)

3.2 Generate synthetic data

(derive distribution from

counts and sample)
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DP multidimensional data release approaches

Approach Dimension Mixed data

type

Parameter(s)

DPCube [XXFG12] Multi-D 7 Variance

threshold

DP-MHMD [RKS16] Multi-D 7 Attribute

grouping

DiffGen [MCFY11] Multi-D X • Attributes

taxonomy

• nbr of

specializations

PrivBayes [ZCP+14] Multi-D X Bayesian

network degree
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PrivBayes [ZCP+14]

PrivBayes 

 

Tutorial: Differential Privacy in the Wild 21 

• Method:  
• Use Bayesian network to learn data distribution 
• After BN learned, generate synthetic data by 

sampling from BN 
• Challenge: privately choosing good decomposition 

[ZCPSX14] 

A B C D E F G ……………

High-dimensional table � 

A B C 
C D 

B E 
D E F 

….. 

Low-dimensional tables 

decompose 

A B C 
C D 

B E 
D E F 

….. 

Noisy tables 

Add noise 

A B C D E F G ……………

Noisy table �∗ 

reconstruct 
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Proposition: DPCocGen



Co-clustering

Bi-clustering
Simultaneously partition the rows

and columns of a data matrix.

D-clustering
Simultaneously partition the

d-dimensions of a data hyper

cube.

Capture the interaction (underlying structure) between the d

entities.
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MODL Co-clustering features

Grouping
Discover the best reordering and grouping of the data cube 1 that:

• maximize the mutual information between the d-clusterings

Aggregation
Aggregation ability which allows to decrease the number of clusters

in a greedy optimal way

1Boullé , M.: Functional data clustering via piecewise constant nonparametric

density estimation.
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DPCocGen

Original data

Full-dim distribution

noise

T
ra

ns
fo

rm

Noisy distribution

co-clustering

Co-clustering matrix

Co-clustering matrix

noise

Noisy co-clustering matrix

generate

Synthetic data

P
artition

Differentially private Co-clustering

ε1

ε2

Composition theorem ε = ε1 + ε2
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Evaluation of DPCocGen



Evaluation

Criteria

1. Joint distribution preservation

2. Relative error for random range queries

3. Performance in classification with a classifier that learns from

synthetic data

To observe

1. Impact of the privacy budget ε

2. Impact of the aggregation level (number of cells)

3. Comparison with the base line algorithm and PrivBayes

12



Evaluation

Criteria

1. Joint distribution preservation

2. Relative error for random range queries

3. Performance in classification with a classifier that learns from

synthetic data

To observe

1. Impact of the privacy budget ε

2. Impact of the aggregation level (number of cells)

3. Comparison with the base line algorithm and PrivBayes

12



Evaluation

Criteria

1. Joint distribution preservation

2. Relative error for random range queries

3. Performance in classification with a classifier that learns from

synthetic data

To observe

1. Impact of the privacy budget ε

2. Impact of the aggregation level (number of cells)

3. Comparison with the base line algorithm and PrivBayes

12



Evaluation

Criteria

1. Joint distribution preservation

2. Relative error for random range queries

3. Performance in classification with a classifier that learns from

synthetic data

To observe

1. Impact of the privacy budget ε

2. Impact of the aggregation level (number of cells)

3. Comparison with the base line algorithm and PrivBayes

12



Evaluation

Criteria

1. Joint distribution preservation

2. Relative error for random range queries

3. Performance in classification with a classifier that learns from

synthetic data

To observe

1. Impact of the privacy budget ε

2. Impact of the aggregation level (number of cells)

3. Comparison with the base line algorithm and PrivBayes

12



Evaluation

Criteria

1. Joint distribution preservation

2. Relative error for random range queries

3. Performance in classification with a classifier that learns from

synthetic data

To observe

1. Impact of the privacy budget ε

2. Impact of the aggregation level (number of cells)

3. Comparison with the base line algorithm and PrivBayes

12



Adult dataset

Adult

- The dataset 2 contains 48,842 instances and has 14 different

attributes. The characteristics of the attributes are both

numeric and nominal

- The attributes {age, workclass, education, relationship, sex}
are retained

- We discretize continuous attributes into data-independent

equi-width partitions

2UC Irvine Machine Learning Repository
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Experiment: Multivariate distribution preservation

Hellinger distance
The Hellinger distance between two discrete probability

distributions P = (p1, ..., pk) and Q = (q1, ..., qk) is given by :

DHellinger (P,Q) = 1√
2

√∑k
i=1(
√
pi −

√
qi )2

Experiment

- Compute the multivariate distribution vector P of the original

dataset

- Compute the multivariate distribution vector Q of the

synthetic data generated using DPCocGen

- Compute the multivariate distribution vector Q ′ of the

synthetic data generated using Base line

- Compute DHellinger (P,Q) and DHellinger (P,Q ′)
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Results: Multivariate distribution preservation
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50 datasets are generated for each configuration

15



Experiment: Random range queries

Experiment

- Generate 100 random queries

- Compute all the queries and report their average error

- Iterate over 15 runs

16



Results: Random range queries
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Experiment: Classification performances

Experiment

• Randomly divide the original dataset into 2 sets :

- Training set: contains 80% of the data

- Test set: contains 20% of the data

• Generate synthetic data using DPCocGen, Base line and

PrivBayes on the Training set

• Learn a naive Bayes classifier from the synthetic data to

predict the value of the attribute Sex

• Measure classification performances of the trained models on

the Test set
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Classification : predict Sex
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Figure 1: Average AUC, across 15 runs 19



Conclusion

Advantages

1. Parameter-free

2. Preserves utility

Limits

1. Limited dimension

2. Requires a discretization step

Perspectives

1. Using differentially private dimension reduction strategies, to

tackle the dimension limitation
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